Relaxation dynamics in a transient network fluid with competing gel and glass phases.
نویسندگان
چکیده
We use computer simulations to study the relaxation dynamics of a model for oil-in-water microemulsion droplets linked with telechelic polymers. This system exhibits both gel and glass phases and we show that the competition between these two arrest mechanisms can result in a complex, three-step decay of the time correlation functions, controlled by two different localization lengthscales. For certain combinations of the parameters, this competition gives rise to an anomalous logarithmic decay of the correlation functions and a subdiffusive particle motion, which can be understood as a simple crossover effect between the two relaxation processes. We establish a simple criterion for this logarithmic decay to be observed. We also find a further logarithmically slow relaxation related to the relaxation of floppy clusters of particles in a crowded environment, in agreement with recent findings in other models for dense chemical gels. Finally, we characterize how the competition of gel and glass arrest mechanisms affects the dynamical heterogeneities and show that for certain combination of parameters these heterogeneities can be unusually large. By measuring the four-point dynamical susceptibility, we probe the cooperativity of the motion and find that with increasing coupling this cooperativity shows a maximum before it decreases again, indicating the change in the nature of the relaxation dynamics. Our results suggest that compressing gels to large densities produces novel arrested phases that have a new and complex dynamics.
منابع مشابه
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition
Confocal microscopy was used to directly observe three-dimensional dynamics of particles in colloidal supercooled fluids and colloidal glasses. The fastest particles moved cooperatively; connected clusters of these mobile particles could be identified; and the cluster size distribution, structure, and dynamics were investigated. The characteristic cluster size grew markedly in the supercooled f...
متن کاملAn investigation on the effect of acetone and DMF as solvent on synthesis of P2O5-CaO-Na2O-TiO2 glass powder by sol-gel method
The sol-gel synthesis method allows greater control over glass morphology at a relatively low processing temperature (200 °C) in comparison with melt-derived glasses. In present study, phosphate-based glasses with the general formula of (P2O5)55-(CaO)25-(Na2O)10-(TiO2)10 was synthesized via a novel and facil...
متن کاملHeterogeneous dynamics in columnar liquid crystals of parallel hard rods.
In the wake of previous studies on the rattling-and-jumping diffusion in smectic liquid crystal phases of colloidal rods, we analyze here for the first time the heterogeneous dynamics in columnar phases. More specifically, we perform computer simulations to investigate the relaxation dynamics of a binary mixture of perfectly aligned hard spherocylinders. We detect that the columnar arrangement ...
متن کاملNumerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions
Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...
متن کاملGelling by Heating
We exploit the concept of competing interactions to design a binary mixture of patchy particles that forms a reversible gel upon heating. Our molecular dynamics computer simulation of such a system shows that with increasing temperature the relaxation dynamics slows down by more than four orders of magnitude and then speeds up again. The system is thus a fluid both at high and at low temperatur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 17 شماره
صفحات -
تاریخ انتشار 2015